Abstract

Quantum subspace diagonalization methods are an exciting new class of algorithms for solving large scale eigenvalue problems using quantum computers. Unfortunately, these methods require the solution of an ill-conditioned generalized eigenvalue problem, with a matrix pencil corrupted by a non-negligible amount of noise that is far above the machine precision. Despite pessimistic predictions from classical perturbation theories, these methods can perform reliably well if the generalized eigenvalue problem is solved using a standard truncation strategy. We provide a theoretical analysis of this surprising phenomenon, proving that under certain natural conditions, a quantum subspace diagonalization algorithm can accurately compute the smallest eigenvalue of a large Hermitian matrix. We give numerical experiments demonstrating the effectiveness of the theory and providing practical guidance for the choice of truncation level.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.