Abstract

We propose a general framework for the study of L 1 contractive semigroups of solutions to conservation laws with discontinuous flux: $$ u_t + \mathfrak{f}(x,u)_x=0, \qquad \mathfrak{f}(x,u)= \left\{\begin{array}{ll} f^l(u),& x < 0,\\ f^r(u), & x > 0, \end{array} \right.\quad\quad\quad (\rm CL) $$ where the fluxes f l , f r are mainly assumed to be continuous. Developing the ideas of a number of preceding works (Baiti and Jenssen in J Differ Equ 140(1):161–185, 1997; Towers in SIAM J Numer Anal 38(2):681–698, 2000; Towers in SIAM J Numer Anal 39(4):1197–1218, 2001; Towers et al. in Skr K Nor Vidensk Selsk 3:1–49, 2003; Adimurthi et al. in J Math Kyoto University 43(1):27–70, 2003; Adimurthi et al. in J Hyperbolic Differ Equ 2(4):783–837, 2005; Audusse and Perthame in Proc Roy Soc Edinburgh A 135(2):253–265, 2005; Garavello et al. in Netw Heterog Media 2:159–179, 2007; Bürger et al. in SIAM J Numer Anal 47:1684–1712, 2009), we claim that the whole admissibility issue is reduced to the selection of a family of “elementary solutions”, which are piecewise constant weak solutions of the form $$ c(x)=c^l11_{\left\{{x < 0}\right\}}+c^r11_{\left\{{x > 0}\right\}}. $$ We refer to such a family as a “germ”. It is well known that (CL) admits many different L 1 contractive semigroups, some of which reflect different physical applications. We revisit a number of the existing admissibility (or entropy) conditions and identify the germs that underly these conditions. We devote specific attention to the “vanishing viscosity” germ, which is a way of expressing the “Γ-condition” of Diehl (J Hyperbolic Differ Equ 6(1):127–159, 2009). For any given germ, we formulate “germ-based” admissibility conditions in the form of a trace condition on the flux discontinuity line {x = 0} [in the spirit of Vol’pert (Math USSR Sbornik 2(2):225–267, 1967)] and in the form of a family of global entropy inequalities [following Kruzhkov (Math USSR Sbornik 10(2):217–243, 1970) and Carrillo (Arch Ration Mech Anal 147(4):269–361, 1999)]. We characterize those germs that lead to the L 1-contraction property for the associated admissible solutions. Our approach offers a streamlined and unifying perspective on many of the known entropy conditions, making it possible to recover earlier uniqueness results under weaker conditions than before, and to provide new results for other less studied problems. Several strategies for proving the existence of admissible solutions are discussed, and existence results are given for fluxes satisfying some additional conditions. These are based on convergence results either for the vanishing viscosity method (with standard viscosity or with specific viscosities “adapted” to the choice of a germ), or for specific germ-adapted finite volume schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.