Abstract
During active behaviours like running, swimming, whisking or sniffing, motor actions shape sensory input and sensory percepts guide future motor commands. Ongoing cycles of sensory and motor processing constitute a closed-loop feedback system which is central to motor control and, it has been argued, for perceptual processes. This closed-loop feedback is mediated by brainwide neural circuits but how the presence of feedback signals impacts on the dynamics and function of neurons is not well understood. Here we present a simple theory suggesting that closed-loop feedback between the brain/body/environment can modulate neural gain and, consequently, change endogenous neural fluctuations and responses to sensory input. We support this theory with modeling and data analysis in two vertebrate systems. First, in a model of rodent whisking we show that negative feedback mediated by whisking vibrissa can suppress coherent neural fluctuations and neural responses to sensory input in the barrel cortex. We argue this suppression provides an appealing account of a brain state transition (a marked change in global brain activity) coincident with the onset of whisking in rodents. Moreover, this mechanism suggests a novel signal detection mechanism that selectively accentuates active, rather than passive, whisker touch signals. This mechanism is consistent with a predictive coding strategy that is sensitive to the consequences of motor actions rather than the difference between the predicted and actual sensory input. We further support the theory by re-analysing previously published two-photon data recorded in zebrafish larvae performing closed-loop optomotor behaviour in a virtual swim simulator. We show, as predicted by this theory, that the degree to which each cell contributes in linking sensory and motor signals well explains how much its neural fluctuations are suppressed by closed-loop optomotor behaviour. More generally we argue that our results demonstrate the dependence of neural fluctuations, across the brain, on closed-loop brain/body/environment interactions strongly supporting the idea that brain function cannot be fully understood through open-loop approaches alone.
Highlights
Neural response are strongly sensitive to behavioural state
Animals actively exploring or interacting with their surroundings must process a cyclical flow of information from the environment through sensory receptors, the central nervous system, the musculoskeletal system and back to the environment
The activity of coherent populations of neurons inform motor behaviours and in turn are influenced by sensory feedback signals mediated by the environment
Summary
Neural response are strongly sensitive to behavioural state. The onset of movement such as running and whisking is coincident with prominent modulations in neural activity in sensory areas [1,2,3]. Several internal pathways have been implicated in this gain regulation including various neuromodulatory pathways [9,10], intracortical feedback modulation by motor areas [11] or they could be directly triggered by changes in sensory input [12,13] via thalamo-cortical projections [14]. Despite this gain reduction, robust responses to sensory input occur during active contact events when the whisker collides with an object placed in the whisk field [5,6]. The RP does not explain why sensory responses to whisker perturbations, which are always unpredicted, are suppressed during movement
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.