Abstract

The archaic eukaryote unicellular microorganism, Paramecium, is propelled by thousands of cilia, which are regulated by modulation of the membrane potential. Ciliates can successfully cope with gravity, which is the phylogenetically oldest stimulus for living things. One mechanism for overcoming sedimentation is negative gravitaxis, an orientational response antiparallel to the gravity vector. We have postulated the existence of a negative gravikinesis in Paramecium, i.e. a modulation of swimming speed as a function of cellular orientation in space. With negative gravikinesis, an upward oriented cell actively augments the rate of forward swimming and depresses active locomotion during downward orientation. A brief outline of the gravikinesis hypothesis is given on a quantitative basis and experimental data are presented which have confirmed the major assumptions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.