Abstract

References [1 and 2] consider a theory of elasticity with spatial distribution of matter for a medium having simple structure and for a one-dimensional medium having complex structure. In the present article the general case of a three-dimensional medium with complex structure is examined. The general scheme of the one-dimensional case [2] is retained; chief attention is directed toward the specific character of the three-dimensional problem. The original micro-model is a complex crystal lattice [3]. In Section 1 this model is generalized to the case of a continuous distribution of matter. The displacements of the mass centers of the unit cells and the micro-strains of the cells are introduced as the kinematic variables. The force variables are the micro-moments. The transition to an exact continuous representation is carried out, and the equations of an elastic medium of complex structure with spatial distribution of matter are derived. The operators corresponding to the continuous theory are expressed in terms of the original microparameters. It is shown that the well known conditions of symmetry of the tensor of elastic constants, which are usually interpreted as the condition of absence of initial stresses [3 and 4], are consequences of the invariance of the elastic energy under translation and rotation. In Section 2 some special models are examined, and the equations of a medium are obtained for the approximation of weak dispersion of matter. These equations contain as a special case the equations of linear nonsymmetric elasticity (couple-stress theory) [5 to 7]. However, in the latter it turns out that the orders of approximation are inconsistent in the various equations from the point of view of the theory of spatial distribution. In Section 3 the equations of a medium having complex structure are transformed in the acoustic range into equations, one of which contains only a single kinematic variable (the displacement of the mass centers) and the others of which are explicitly solvable for the remaining kinematic variables. The first equation of this set coincides in form with the equation for a medium with simple structure, but differs from it by the presence of a timewise dispersion which is unrelated to energy dissipation. Expressions are written for the energy density, and it is shown that it is possible to introduce a symmetric stress tensor, as in the case of a simple structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.