Abstract

A theory is presented to predict deposition rates of fine particles in two-dimensional compressible boundary layer flows. The mathematical model developed accounts for diffusion due to both molecular and turbulent fluctuations in the boundary layer flow. Particle inertia is taken into account in establishing the condition on particle flux near the surface. Gravitational settling and thermophoresis are not considered. The model assumes that the fraction of particles sticking upon arrival at the surface is known, and thus, treats it as a given parameter. The theory is compared with a number of pipe and cascade experiments, and a reasonable agreement is obtained. A detailed application of the model to a turbine is also presented. Various regimes of particle transport are identified, and the range of validity of the model is discussed. An order of magnitude estimate is obtained for the time the turbine stage can be operated without requiring cleaning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.