Abstract
Abstract Buoyancy and velocity scales for dry convection in statistical equilibrium were derived in the early twentieth century by Prandtl, but the scaling of convective velocity and buoyancy, as well as the fractional area coverage of convective clouds, is still unresolved for moist convection. In this paper, high-resolution simulations of an atmosphere in radiative–convective equilibrium are performed using the Weather Research and Forecasting (WRF) model, a three-dimensional, nonhydrostatic, convection-resolving, limited-area model. The velocity and buoyancy scales for moist convection in statistical equilibrium are characterized by prescribing different constant cooling rates to the system. It is shown that the spatiotemporal properties of deep moist convection and buoyancy and velocity scales at equilibrium depend on the terminal velocity of raindrops and a hypothesis is developed to explain this behavior. This hypothesis is evaluated and discussed in the context of the numerical results provided by the WRF model. The influence of domain size on radiative–convective equilibrium statistics is also assessed. The dependence of finescale spatiotemporal properties of convective structures on numerical and physical details is investigated.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.