Abstract

The determination of an absolute configuration is a challenge in the structure elucidation of chiral natural products. With advancements in computational chemistry of chiroptical spectroscopy, the time-dependent density functional theory (TDDFT) calculation has emerged as a very promising tool. This paper attempts to illustrate the applicability of computational approaches in comparison with experimental data to understand the conformation, interaction, and stabilization of the loliolide's isomers. The quantum chemical calculations were used from optimized geometries of the (6R,7aS)-, (6S,7aR)-, (6R,7aR)-, and (6S,7aS)-6-hydroxy-4,4,7a-trimethyl-6,7-dihydro-5H-1-benzofuran-2-one. The spectroscopic values were obtained for 13C NMR isotropic shielding by GIAO method in mPW1PW91/cc-pVTZ level, in TDDFT at the ωB97X-D/cc-pVTZ level to the circular dichroism, and in theoretical analyses of non-covalent interaction to study the isomer's stability. The TDDFT calculation of circular dichroism can be used to quantify the individual isomers and the nature of excitation in the molecule. The (6R,7aS) and (6R,7aR) isomers present a higher stability due to electronegativity associated at the hydroxyl group.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call