Abstract

On the basis of the theory of unsteady heat conduction, discrete equations for the unsteady temperature field in the secondary linings of high-water-temperature tunnels when considering the hydration heat of lining concrete were derived and established. Spatiotemporal variation in the temperature field of tunnel linings was revealed through the analysis of numerical examples. Research demonstrates that the temperature of the secondary lining within a thickness range of approximately 15 cm near the tunnel clearance decreases sharply under the condition that the lining thickness is 35 cm. The higher the temperature on the lining's outer surface, the more drastically the lining temperature decreases. When considering the hydration heat of lining concrete, the lining temperature increases to a certain extent after a sudden drop, reaching stability after approximately 20 h, and the lining temperature is approximately 1-2 °C higher than that without taking concrete hydration heat into account. The temperature difference between the tunnel lining's core and its inner and outer surfaces is positively and negatively correlated with the temperature of the secondary lining's outer surface, respectively. When the temperature of the secondary lining's outer surface is not higher than 65 °C, the temperature difference between the tunnel lining's core and its inner and outer surfaces is less than 20 °C. Conversely, it partially or completely exceeds 20 °C, in which case an insulation method is recommended to utilize to prevent thermal cracks in secondary linings triggered via a high temperature difference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.