Abstract
1,3-dipolar cycloaddition procedure is one of the most widely practiced methods in order to synthesize heterocyclic compounds. Although, it seems very simple, but, there are numerous precursors of heterocyclic molecules who have more than one positions to react with a 1,3-dipole species. As a result, while using a precursor with more than one position for reaction, it is probable to synthesize several products with different structures. This paper studies all possible interactions of vinyl acetylene, which has two positions for reaction, with methyl azide. This reaction could lead to the emergence of any 1,3-dipolar cycloaddition products. Our ultimate goal is to help researchers to find out how precursors containing both carbon-carbon double, and the triple bonds interact with 1,3- dipolar species. The present study used the DFT calculations at B3LYP/6-311++G(3df,pd) level to check all probable interactions between vinyl acetylene and methyl azide, and determined Potential Energy Surface, and optimized all species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Combinatorial Chemistry & High Throughput Screening
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.