Abstract
Atmospheric iodine chemistry plays a key role in tropospheric ozone catalytic destruction, new particle formation, and as one of the possible sinks of gaseous polar elemental mercury. Moreover, it has been recently proposed that reaction of ozone with iodide on the sea surface could be the major contributor to the chemical loss of atmospheric ozone. However, the mechanism of the reaction between aqueous iodide and ozone is not well known. The aim of this paper is to improve the understanding of such a mechanism. In this paper, an ab initio study of the reaction of aqueous iodide and ozone is presented, evaluating thermodynamic data of the different reactions proposed in previous experimental studies. In addition, the structures, energetics and possible evolution of the key IOOO(-) intermediate are discussed for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.