Abstract
Ozone has been widely used to degrade volatile organic compounds (VOCs) in combination with other methods such as ultraviolet light, adsorption, thermal and catalytic incineration. Despite its fundamental importance, the mechanism and kinetics of the reaction between ozone and VOCs are still lacking of detailed investigation. It is well known that quantum chemical calculation is a well-established method for investigating the chemical reactions. In this paper, quantum chemical calculation is employed to investigate the mechanism and kinetics of the reaction between ozone and VOCs exemplified by benzene. The microcosmic reaction process was depicted and discussed in detail based on geometry optimizations made using the UB3LYP/6-31G (d) method. According to the mechanism study, the kinetic parameters were also calculated by the classical transition state theory (TST). The calculated activation energy is 14.90 kcal/mol at the QCISD(t)/6-311g(d,p)//UB3LYP/6-31G(d) level of theory, while the obtained Arrhenius expression is that, k=1.05×1011 exp(-61527/RT) (cm3·mole−1·s−1). Both the activation energy and the Arrhenius expression are in good agreement with the experimental results, which indicated that the mechanism and kinetic study of the reaction between benzene with ozone by employing quantum chemical calculation was reasonable and reliable.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.