Abstract
Using first-principles calculations based on density functional theory (DFT), we study the aluminum fluoride (AlF3) intercalation in graphite as a new possibility to use this molecule in rechargeable batteries, and understand its role when used as a component of the solvent. We discuss the most stable configuration of the AlF3 molecule in graphite for stage-2 and stage-1 and the diffusion study of the molecule, the migration pathways and the energy barriers. Our results show an average voltage of 3.18 V for stage-2 and 3.44 V for stage-1, which is excellent for anion intercalated batteries. Furthermore, low diffusion energy barriers of the AlF3 intercalant molecules were found (the lowest diffusion energy barrier was 0.17 eV with a diffusion constant in the order of 10-5 cm2 s-1), which could lead to fast (dis)charging of a battery based on AlF3. The present study provides important information to understand the intercalation mechanism of AlF3 graphite layer electrodes, thus encouraging more experimental studies of this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.