Abstract

A robust and accurate tight-binding quantum chemical method (GFN2-xTB) was performed to study the electronic and optical properties of graphitic carbon nitride (g-C3N4) and g-C3N4 modified with non-metal atom (B, C, N, O, F). The vertical ionization potential, electron affinity and global electrophilicity indexes were calculated and analyzed. The obtained results show that the doping of B, C, N, O or F atom onto the surface g-C3N4 is favorable in terms of formation energy. The introduction of non-metal atoms raises the Lewis acidity of g-C3N4. The calculated UV-VIS spectra show that the doping of non-metal atoms increases the absorption intensity of visible light compared to the pure g-C3N4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call