Abstract

Several biological processes, such as convective nutrient transport and convective drug delivery in biological tissues involves the transvascular and interstitial movement of biofluids. This work addresses transvascular and interstitial transport of nutrient inside a spherical tumor. Most of the biological tissues behave like deformable porous material and show mechanical behavior towards the fluid motion, due to the fact, that the forces like the drag, which is associated with fluid flow may compress the tissue material. On the macroscopic level, transport of solutes like nutrients, drug molecules, etc. within the tumor interstitial space is modeled. The hydrodynamic problem is treated with biphasic mixture theory under steady state and spherically symmetry situation. The transvascular transport of nutrient is modeled with the modified Sterling’s equation. The present model describes the overall nutrient distribution and predicts various criteria for the necrosis formation inside the tumor. Present study justifies that the parameters, which controls the nutrient supply to the tumor interstitial space through the blood vessel network inside the tumor, competes with reversible nutrient consumption kinetics of the tumor cells. This study also finds the role of some of those parameters on the deformation of cellular phase of the tumor as a consequence of interstitial fluid flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call