Abstract

A noble gas compound containing a triple bond between xenon and transition metal Os (i.e. F4XeOsF4, isomer A) was predicted using quantum-chemical calculations. At the MP2 level of theory, the predicted Xe-Os bond length (2.407 Å) is between the standard double (2.51 Å) and triple (2.31 Å) bond lengths. Natural bond orbital analysis indicates that the Xe-Os triple bond consists of one σ-bond and two π-bonds, a conclusion also supported by atoms in molecules (AIM) quantum theory, the electron density distribution (EDD) and electron localization function (ELF) analysis. The two-body (XeF4 and OsF4) dissociation energy barrier of F4XeOsF4 is 15.6 kcal mol-1. The other three isomers of F4XeOsF4 were also investigated; isomer B contains a Xe-Os single bond and isomers C and D contain Xe-Os double bonds. The configurations of isomers A, B, C and D can be transformed into each other.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call