Abstract

Abstract Structures and stability of benzoic acid dimer ((BA)2) and benzoic acid–water (BA–H2O) m:n complexes, with m and n = 1, 2, were studied in benzene solutions, using molecular dynamics (MD) simulations. It appeared that nearly all hydrogen bond (H-bond) complexes suggested from different partition experiments existed in MD simulations, with the probability depending on their size and temperature. The MD results revealed the probability of finding H-bonds between water molecules, as well as the non-self-association of water molecules in benzene solutions. Although the H-bonds in (BA)2 are quite strong in the gas phase and pure benzene, they can be opened by water molecules, forming microhydrates in benzene solutions. It was shown that, in order to provide insights into the structures and stability of the BA–H2O complexes in benzene solution, solvent molecules as well as dynamic and temperature effects have to be included in theoretical investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.