Abstract

This study investigated dynamic surface wrinkle propagation across a series of flower-like rotational grain boundaries (GBs) in graphene using theoretical solutions and atomistic simulations. It was found that there was significantly less out-of-plane displacement of dynamic wrinkles when curvature of rotational GBs was reduced, which can be explained by a defect shielding effect of flower-like GBs. Potential energy evolved via different modes for pristine graphene and graphene with various GBs. With external excitation, the distinctly different patterns of wrinkle propagation in graphene with various GBs demonstrated how dynamic wrinkling can reveal defects. These results can provide a theoretical basis for guiding the design and implementation of graphene-based nano-mechanical devices such as protectors and detectors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.