Abstract

The potential-energy surface of the lowest-lying triplet uracil tautomerization is comprised of the 13 possible tautomeric forms including uracil itself. Their structures are determined at the B3LYP/6 - 31 + G(d,p) level. Some characteristics of the tautomeric geometries are described. The intra-molecular proton transfer reaction mechanism and the variation of thermodynamic properties show that reaction enthalpy is the determining factor for the occurrences and populations of the stable tautomers. The relative stability ordering of all the triplet uracil tautomers is established. The proton affinities (PAs) and the deprotonation enthalpies (DPEs) of the atoms or bonds involved in the tautomerization process are calculated at both B3LYP and MP2 methods. The PA and DPEs values sensitively depend on the tautomeric form. The N1 site has a greater PA value than other sites and the PA of O4 is greater than that at the N2 site in the same tautomer. The DPE of OH is larger than that of NH in the keto-enol tautomers and the DPE of O4H4 larger than that of O2H2. These results provide a rationale for the fact that the dioxo form of uracil is the most stable one among the tautomers. The relative energies of the uracil tautomers are then rationalized in terms of a second-order polynomial of the difference between their mean PAs and DPEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.