Abstract
An effective solvent model with an explicit solvent representation is described. The modelled perturbation of the solute due to the discrete solvent molecules includes polarization and a non-electrostatic interaction. The latter depends on the overlap between the solute wave function and the solvent orbitals and approximately accounts for the restraint the Pauli principle puts on the space which the solute wave function is allowed to occupy, and consequently also models the exchange repulsion between solute and solvent. The wave function of the solute is a linear combination with variational coefficients of orthogonal states obtained with the complete active space state interaction (CASSI) method. With this model, the solvent shift to the n→ π* transition in hydrated formaldehyde is studied and the analysis of the results investigates the different contributions to the total shift; the non-electrostatic interaction is found to be of significance and capable of coupling with the electrostatic interaction in qualitatively different ways for the ground and first excited state. Solvent density distributions for hydrated formaldehyde are also reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.