Abstract

Abstract Expressions are derived for the horizontal and vertical components of the wind, the temperature, and the mass of water vapor condensed when air flows over a long mountainous ridge. The growth of solid precipitation particles in the orographic clouds by deposition from the vapor phase, riming and aggregation are considered. The trajectories of these precipitation particles are then computed from their fallspeeds and the airflow model. The model is used to investigate the effects of the microstructure of clouds on the growth and fallout of solid precipitation over the Cascade Mountains. It is shown that, under suitable conditions, increases in the concentration of ice particles in the clouds from about 1 to 100 liter−1 can cause the solid precipitation to be carried farther downwind and over the Cascade crest, so that snowfall is deposited on the eastern rather than the western slopes of the mountains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.