Abstract
The ground and excited states of the AmO(2) (+), AmO(2) (2+), and AmO(2) (3+) ions have been studied using the four-component configuration interaction singles doubles, spin-orbit complete active space self-consistent field, and spin-orbit complete active space-order perturbation theory methods. The roles of scalar relativistic effects and spin-orbit coupling are analyzed; results with different methods are carefully compared by a precise analysis of the wave functions. A molecular spinor diagram is used in relation to the four-component calculations while a ligand field model is used for the two-step method. States with the same number of electrons in the four nonbonding orbitals are in very good agreement with the two methods while ligand field and charge transfer states do not have the same excitation energies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.