Abstract

We present a detailed theoretical study of oxygen molecules in high rotational states (molecular superrotors) interacting with an external magnetic field. The system shows rich dynamics, ranging from a spin-selective splitting of the angular distribution over molecular alignment to an inversion of the rotational direction. We find that the observed magneto-rotational effects are due to a spin-mediated precession of the orbital angular momentum around the magnetic field. Analytical expressions for the precession frequency in the limits of weak and strong magnetic fields are derived and used to support the proposed mechanism. In addition, we provide the procedure for a numerical treatment of oxygen superrotors in an external magnetic field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.