Abstract

We present a QM and QM/MM study of steric and electronic effects in the main steps of Rh-catalyzed carbonylation reactions. All the considered systems adopt a square-planar geometry prior to CH(3)I oxidative addition. As regards the octahedral complexes after CH(3)I oxidative addition, a comparison between the various models indicates that the energy gain due to the CH(3)I oxidative addition is reduced by the steric pressure of the substituents on the ligand. The substantially similar results obtained with the QM/MM and QM models indicate that electronic effects are not particularly relevant in determining the energetic of oxidative addition. As regards the P,P-Ph octahedral complex, the geometries in which the CO group is trans to the added CH(3) group, or trans to one of the P atoms, are of similar energy. A comparison between the various models indicates that the energy barrier of the CO insertion reaction is lowered by the presence of substituents on the chelating ligands. This effect is related to a relief of the steric pressure on the complex as the systems move from a six-coordinated octahedral geometry toward a five-coordinated square-pyramidal geometry. The energy barrier calculated for the P,S-Ph system is in rather good agreement with the experimental value, whereas that of the P,P-Ph system is somewhat underestimated. Inclusion of solvent effects with a continuum model leads to a slightly better agreement. The thermodynamic products adopt a square-pyramidal geometry with the COCH(3) group in the apical position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.