Abstract

The (1)(n-->pi(*)) electron transition of acrolein in liquid water was studied theoretically by using the averaged solvent electrostatic potential/molecular dynamics method. The model combines a multireference perturbational treatment in the description of the solute molecule with molecular dynamics calculations in the description of the solvent. We demonstrate the importance of the solvent electron polarization, bulk solvent effects, and the use of relaxed geometries in solution on the calculated solvent shift. It is also shown that the inclusion of the dynamic correlation does not change the solvent shift although it must be used to reproduce the transition energy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.