Abstract

In this paper, the propagation of light soliton is studied in nonlinear optical fiber. We propose the external excitation of SQD waveguides through an optical source that allows the generation of solitary waves that are propagated through a non-linear optical fiber. The soliton formation is studied theoretically from the non-linear interaction between the external optical excitation and SQDs, considering SQDs as a quantum system of three energy levels. In this study, the Fourier Split-Step (FSS) method is used to solve numerically continuous nonlinear Schrodinger equation (NLSE) to evolution of the soliton pulse emitted by the SQDs inside an optical fiber with real physical parameters. The effect of SQDs density and electric field on the pulse width is also studied. Phase plane portraits are drawn for the stability of soliton in fiber and SQDs using software Matcont.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call