Abstract

Malware can range from simple adware to stealthy kernel control-flow modifying rootkits. Although anti-virus software is popular, an ongoing cat-and-mouse cycle of anti-virus development and malware that thwarts the anti-virus has ensued. More recently, trusted hardware-based malware detection techniques are being developed on the premise that it is easier to bypass software-based defenses than hardware-based counterparts. One such approach is the use of hardware performance counters (HPCs) to detect malware for Linux and Android platforms. This paper, for the first time, presents an analytical framework to investigate the security provided by HPC-based malware detection techniques. The HPC readings are periodically monitored over the duration of the program execution for comparison with a golden HPC reading. We develop a mathematical framework to investigate the probability of malware detection, when HPCs are monitored at a pre-determined sampling interval. In other words, given a program, a set of HPCs, and a sampling rate, the framework can be employed to analyze the probability of malware detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.