Abstract

Gas-phase and solid-state Hg(CF 3) 2 have been studied using a relativistic density-functional method. The crystalline environment was simulated by a cut-off-type Madelung potential. Bond lengths, dissociation energies, force constants, and enthalpy of sublimation are calculated. The influence of the crystal field (CF) on the molecular properties is well reproduced by the CF model. The intermolecular bonding in the crystal structure is examined and is revealed to be dominated by electrostatic effects. The relatively high enthalpy of sublimation evaluated for the crystal compound (Δ H sub=18.7 kcal) accounts for its relatively high melting points. A hypothetical crystal Hg(CH 3) 2 is shown to have a small Δ H sub (3 kcal mol −1), which explains why no solid-state Hg(CH 3) 2 exists. Ionization potentials for all the valence MOs of the gas-phase Hg(CF 3) 2 are predicted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.