Abstract

The development of statistical mechanical models of the formation of noncanonical structures in circular DNA and the finding of the energy parameters for these models made it possible to predict the appearance of such structures in a DNA with any given sequence. It does not seem feasible, however, to perform such calculations for DNA sequences of considerable length by allowing for all the possible states. We propose a special algorithm for calculating the thermodynamic characteristics of various conformational rearrangements in DNA that occur under negative supercoilings, allowing for several possible states of each base pair in the chain. Calculations have been performed for a number of natural DNAs. According to these calculations, the most likely noncanonical structures in DNA under normal conditions are cruciform structures and the Z form. The results of the calculations are compared with the experimental data reported in the literature. State diagrams have been computed for a number of inserts in circular DNA that can adopt both the cruciform conformation and the left-handed helical Z form.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call