Abstract

In this study the results from a series of calculations are reported that probe the influence of the QM cluster size and the extended framework treatment in ONIOM calculations. This is done by comparing the differences in the structures and energetics obtained during simulations of cis-trans isomerisation of butene in H-ZSM-5 at varying level of accuracy. Seven different models have been employed; 3T, 5T and 10T DFT cluster models, and to more effectively encode the extended framework of ZSM-5; 3T:46T, 5T:46T, 10T:46T DFT:MM ONIOM models, and a 46T DFT cluster model. The results show that irrespective of the exact QM cluster size, relatively small gasphase clusters show clear limitations due to the neglect of the extended framework. In particular, the structural and electronic implications of using the different zeolite models have been rigorously assessed using the multivariate statistical method principal components analysis (PCA).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.