Abstract
The reaction of the ground state atomic carbon, C(3P), with simple unsaturated nitrile, C2H3CN(X1A' (vinyl cyanide), is investigated theoretically to explore the probable routes for the formation of carbon-nitrogen-bearing species in extraterrestrial environments particularly of ultralow temperature. Five collision complexes without entrance barrier as a result of the carbon atom addition to the pi systems of C2H3CN are characterized. The B3YLP/6-311G(d,p) level of theory is utilized in obtaining the optimized geometries, harmonic frequencies, and energies of the intermediates, transition states, and products along the isomerization and dissociation pathways of each collision complex. Subsequently, with the facilitation of computed RRKM rate constants at collision energy of 0-10 kcal/mol, the most probable paths for each collision complexes are determined, of which the CCSD(T)/6-311G(d,p) energies are calculated. The major products predicted are exclusively due to the hydrogen atom dissociations, while the products of H2, CN, and CH2 decompositions are found negligible. Among many possible H-elimination products, cyano propargyl (p4) and 3-cyano propargyl (p5) are the most probable, in which p5 can be formed via two intermediates, cyano allene (i8) and cyano vinylmethylene (i6), while p4 is yielded from i8. The study suggests this class of reaction is an important route to the synthesis of unsaturated nitriles at the temperature as low as 10 K, and the results are valuable for future chemical models of interstellar clouds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.