Abstract

Recently, convex-concave bilinear Saddle Point Problems (SPP) is widely used in lasso problems, Support Vector Machines, game theory, and so on. Previous researches have proposed many methods to solve SPP, and present their convergence rate theoretically. To achieve linear convergence, analysis in those previouse studies requires strong convexity of φ( z ). But, we find the linear convergence can also be achieved even for a general convex but not strongly convex φ( z ). In the article, by exploiting the strong duality of SPP, we propose a new method to solve SPP, and achieve the linear convergence. We present a new general sufficient condition to achieve linear convergence, but do not require the strong convexity of φ( z ). Furthermore, a more efficient method is also proposed, and its convergence rate is analyzed in theoretical. Our analysis shows that the well conditioned φ( z ) is necessary to improve the efficiency of our method. Finally, we conduct extensive empirical studies to evaluate the convergence performance of our methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.