Abstract

Infrared spectroscopy has long provided a means to estimate the secondary structure of proteins and peptides. In particular, the vibrational spectra of the amide I' band have been widely used for this purpose as the frequency positions of the amide I' bands are related to the presence of specific secondary structures. Here, we calculate the amide I' IR spectra of polylysine in aqueous solution in its three secondary structure states, i.e., α-helix, β-sheet, and random coil, by means of a mixed quantum mechanics/molecular dynamics (QM/MD) theoretical-computational methodology based on the perturbed matrix method (PMM). The computed spectra show a good agreement with the experimental ones. Although our calculations confirm the importance of the excitonic coupling in reproducing important spectral features (e.g., the width of the absorption band), the frequency shift due to secondary-structure changes is also well reproduced without the inclusion of the excitonic coupling, pointing to a role played by the local environment. Concerning the β-conformation spectrum, which is characterized by a double-peak amide I' band due to excitonic coupling, our results indicate that it does not correspond to a generic antiparallel β-sheet (e.g., of the typical size present in native proteins) but is rather representative of extended β-structures, which are common in β-aggregates. Moreover, we also show that the solvent has a crucial role in the shape determination of the β-conformation amide I' band and in particular in the disappearance of the high-frequency secondary peak in the case of small sheets (e.g., 6-stranded).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.