Abstract

Relativistic density functional theory was used to explore the structural and redox properties of 18 prototypical actinyl silylamides including a variation of metals (U, Np and Pu), metal oxidation states (VI and V) and equatorial ligands. A theoretical approach associated with implicit solvation and spin–orbit/multiplet corrections was proved to be reliable. A marked shift of reduction potentials of actinyl silylamides caused by changes of equatorial coordination ligands and implicit solvation was elucidated by analyses of electronic structures and single-electron reduction mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.