Abstract
Simulation of the effects of Si/Al ratio (material variable) and pressure (operational variable) on water purification with zeolite membranes was discussed. LTA, FAU, and MFI zeolitic structures, respectively having low (1.5), medium (5.6), and high (15) Si/Al ratio were created in Packmol software followed by determining their parameters in LAMMPS varying pressure (12, 24, 36, and 48 MPa). Lenard-Jones interactions were considered applying Tersoff hybrid force field with water modeling based on TIP3P and CHARMM force field. Typical pollutants representing different electronegativity (2.19 for Pb2+ and 1.88 for Co2+) along with chlorine ions (Cl−) were subjected to dynamic simulation for 0.5 ns of equilibrium. Water and ions flux passing the membranes both increase upon pressure rise, particularly at a low Si/Al ratio. Moreover, van der Waals, mean square displacement (MSD), and ion density were captured. Graphical illustrations unveiled dominant mechanisms by VMD software. MFI membrane with rejection above 80% was the bests membrane. The LTA membrane's water flux was the highest, with ca. 3000 ns−1 passing water molecules. van der Waals patterns suggest heavy metal ions trapped in zeolite and their accumulation and agglomeration behind the membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.