Abstract

A theoretical model for estimating inactivation effects on marine Vibrio sp. is developed from the viewpoint of the chemical action of the OH radicals induced by interaction of bubbles with shock waves. It consists of a biological probability model for cell viability and a bubble dynamic model for its collapsing motion due to the shock pressures. The biological probability model is built by defining a sterilized space of the OH radicals. To determine the radius of the sterilized space, the Herring equation is solved in the bubble dynamic model in consideration of the effect of the heat conductivity and mass transportation. Furthermore, the pressure waveform of incident shock wave used in the model is obtained with the pressure measurement. On the other hand, a bio-experiment of marine Vibrio sp. is carried out using a high-voltage power supply in a cylindrical water chamber. Finally, the viability ratio of marine bacteria estimated by the theoretical model is examined under the experimental conditions of this study. In addition, we also discuss the influence of bubble initial size for predicting the inactivation effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.