Abstract

Abstract General principles of non-equilibrium thermodynamics are used to formulate a model which describes the motion of aerosol particles affected simultaneously by Brownian diffusion, inertial impaction, electric forces and phoretic forces. The theory presented applies to an ideal mixture consisting of dry air, water vapor and aerosol particles where temperature, pressure as well as vapor and particle concentration inhomogeneities are to be considered. In addition, the system is subjected to the earth's gravity, to an external electric field as well as to a Coulomb force due to a charged collecting water drop. The basic model assumptions are as follows: 1) the diffusive kinetic energy of the aerosol particles is part of the internal energy of the total system, 2) an extended Gibbs relation, based on the Mazur-de Groot theorem, is used to derive the budget equation of entropy, and 3) the entropy production function obeys a quadratic form for the driving forces of heat, vapor and particle diffusion. In o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.