Abstract

The role of metastable retained austenite(γ R), its volume fraction, and mechanical stability on the flow characteristics of a dual phase steel containing 20 vol pct of ‘as quenched’ martensite in a ferrite matrix has been examined in this paper employing the flow curve expressions derived in Part I of this paper. It has been found that for a given volume fraction ofγ R, its mechanical stability plays a crucial role in enhancing the ductility. Whereas highly stableγ R does not contribute either to strength or ductility of the steel, highly unstableγ R which causes an increase in the strength is detrimental to ductility. Aγ R which is moderately stable and undergoesγ R → α′ transformation over a larger strain range is beneficial to enhanced ductility. Increasing amounts of moderately stableγ R significantly increase both the strength and the ductility of dual-phase steels through a sustained work-hardening due toγ R → α′ transformation. Load transfer which is determined by a parameterq has a significant contribution to work-hardening. A value of ∣|q∣|= 4500 MPa has been found to partition realistically the stress and strain in these steels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call