Abstract

Association between cations and anions plays an important role in the interfacial structure of room-temperature ionic liquids (ILs) and their electrochemical performance. Whereas great efforts have been devoted to investigating the association effect on the equilibrium properties of ILs, a molecular-level understanding of the charging dynamics is yet to be established. Here, we propose a theoretical procedure combining reaction kinetics and the modified Poisson-Nernst-Planck (MPNP) equations to study the influences of ionic association on the dynamics of electrical double layer (EDL) in response to an applied voltage. The ionic association introduces a new decay length λS and relaxation time scale τRC=λSL/D, where L is the system size and D is ion diffusivity, that are distinctively different those corresponding to non-associative systems. Analytical expressions have been obtained to reveal the quantitative relations between the dynamic timescales and the association strength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call