Abstract

Many synthetic and natural media which are often described as multifunctional smart materials demonstrate thermo-electro-chemo-mechanical coupling behavior and are sensitive to external environmental stimuli. This paper presents a set of basic equations, a variational principle and a finite element procedure for investigating the coupled behavior of thermo-electro-chemo-elastic media. Emphasis here is placed on introducing chemical effects into the coupled equation system. Using the governing equations of thermal conduction, electric flow, ionic diffusion and momentum balance, a variational principle is deduced for a linearly coupled system by means of the extended Gibb’s free energy function. The variational principle is then used to derive a fully coupled multi-field finite element formulation for simulating the coupled thermo-electro-chemo-elastic behavior of biological tissues. Numerical examples are considered to illustrate the coupled phenomena of the materials and to verify the proposed variational theory and numerical procedure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call