Abstract

Scalp recordings of cortical activations, Electroencephalography (EEG), are commonly used clinically to detect diseases or injuries to the underlying cortical physiology. Unfortunately, the EEG signal is also artifact prone and these artifacts can exhibit a similar temporal and spectral profile as that caused by the potential disease. We have created a model of simulated (synthetic) EEG and artifacts to explore their interplay and the theoretical limits of detection when artifacts may not be separable from clinical events of interest. A theoretical limit of separation without an EEG signal is derived and then simulated upper bounds for time-domain event detection are created using simulated EEG data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.