Abstract

The nitro derivatives of toluenes are optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/6-31G* level. Detonation properties are evaluated using the modified Kamlet–Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure and the number of nitro and methyl groups. Thermal stability and the pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies at the unrestricted B3LYP/6-31G* level. The activation energies of H-transfer reaction are smaller than the BDEs of all bonds and this illustrates that the pyrolysis of the title compounds may be started from the isomerization reaction of H transfer. According to the quantitative standard of energetics and stability as an HEDC (high energy density compound), pentanitrotoluene essentially satisfies this requirement. In addition, we have discussed the effect of the nitro and methyl groups on the static electronic structural parameters and the kinetic parameter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.