Abstract
To model the structure of a urea molecule in aqueous solution including adaption of the solute electronic structure, we have used the reference interaction site model−self-consistent-field (RISM-SCF) method, describing the solute electronic structure at the ab initio level and hydration via an integral equation for the solvent distribution. The RISM-SCF model for aqueous urea gives a clearly nonplanar urea structure, with more than seven waters located within a contact distance defined for hydrogen bonding. The pyramidalization at the urea nitrogen sites is reduced in water relative to the gas phase, but the structure is closer to the gas phase structure than to the planar crystal structure. It is further shown that the solvent produces substantial polarization of the urea solute, with the dipole moment increasing from 4 to 7 D as the geometry and electronic structure are optimized to the aqueous environment. The overall result is to favor a high density of hydrogen bonds between urea and the surrounding ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of Physical Chemistry B
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.