Abstract
Based on the problem of determining the hidden dimensionality (or the number of latent factors) of Factor Analysis (FA) model, this paper provides a theoretic comparison on several classical model selection criteria, including Akaike’s Information Criterion (AIC), Bozdogan’s Consistent Akaike’s Information Criterion (CAIC), Hannan–Quinn information criterion (HQC), Schwarz’s Bayesian Information Criterion (BIC). We focus on building up a partial order of the relative underestimation tendency. The order is shown to be AIC, HQC, BIC, and CAIC, indicating the underestimation probabilities from small to large. This order indicates an order of model selection performances to great extent, because underestimations usually take the major proportion of wrong selections when the sample size and the population signal-to-noise ratio (SNR, defined as the ratio of the smallest variance of the hidden dimensions to the variance of noise) decrease. Synthetic experiments by varying the values of the SNR and the training sample size N verify the theoretical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.