Abstract
It is of great importance and worthy of efforts to give a clear structure-property relationship and microscopic mechanism of fluorescence emitters with high quantum yield. In this work, we perform a detailed computational investigation to give an explanation to the high efficiency of a fluorescence emitter XBTD-NPh based TADF sensitized fluorescence (TSF) OLEDs, and construct a symmetry structure DSBNA-BTD. Theoretical calculations show that XBTD-NPh is a long-time phosphorescent material at 77 K and TADF is attributed to the RISC of T1 to S1 state. For DSBNA-BTD, excitons arrived at T1 state comes to a large rate of nonradiatively path to the ground state, meaning it is may not be an efficient TADF molecule. For both molecules, the fast IC between T2 and T1 state results in that the hot exciton channel T1-Tn-S1 makes no contribution to the TADF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.