Abstract

Abstract The increased importance of heat sinks in electronic cooling applications has resulted in a revived interest in extended surfaces, or fins. Also, space and cost constraints provide impetus for optimizing thermal performance for a given, or least, amount of material. The current research focuses on a pin fin design of least material, where the diameter of the pin fin varies axially to maintain the axial heat flux constant; thus all fin material is utilized equally. Although such fins have been studied in the past, the convective heat transfer coefficient was assumed to be constant, which is not entirely true since it is known to be a function of diameter for cylindrical bodies. The current research shows that an optimal fin based on a variable convective heat transfer coefficient yields a true optimal profile, and utilizes material better; that is, it uses a lower volume of material to achieve the same heat dissipation rate. This improvement in material utilization is show to be anywhere from approximately 3% to 14%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.