Abstract

The cooperativity effects between the O/N-H∙∙∙F(-) anionic hydrogen-bonding and O/N-H∙∙∙O hydrogen-bonding interactions and electrostatic potentials in the 1:2 (F(-):N-(Hydroxymethyl)acetamide (signed as "ha")) ternary systems are investigated at the B3LYP/6-311++G** and MP2/6-311++G** levels. A comparison of the cooperativity effect in the "F(-)∙∙∙ha∙∙∙ha" and "FH∙∙∙ha(-)∙∙∙ha" systems is also carried out. The result shows that the increase of the H∙∙∙O interaction energy in the O-H∙∙∙O-H, N-H∙∙∙O-H or N-H∙∙∙O = C link is more notable than that in the O-H∙∙∙O = C contact upon ternary-system formation. The cooperativity effect is found in the complex formed by the O/N-H∙∙∙F(-) and O/N-H∙∙∙O interactions, while the anti-cooperativity effect is present in the system with only the O/N-H∙∙∙F(-) H-bond or the "FH∙∙∙ha(-)∙∙∙ha" complex by the N(-)∙∙∙H-F contact. Atoms in molecules (AIM) analysis and shift of electron density confirm the existence of cooperativity. The most negative surface electrostatic potential (V(S,min)) correlates well with the interaction energy E' int.(ha∙∙∙F-) and synergetic energy E(syn.), respectively. The relationship between the change of V(S,min) (i.e., ΔV(S,min)) and E(syn.) is also found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call