Abstract

We study the stochasticity in a dynamical model: ribosome flow model with different site sizes that models the unidirectional movement of particles controlled by transition rates along a lattice having different site sizes. Our work models the parameters as random variables with known distributions and investigates the steady-state flow rate under this notion by using tools from the random matrix theory. Some closed-form theoretical results are derived for the steady-state flow rate under some restrictive assumptions such as random variables being independent and identically distributed. Furthermore, for arbitrary but bounded stochastic transition rates, stochastic site capacities, or both, we establish bounds for the steady-state flow rate. Our analysis can be generalized and applied to study the flow of particles in numerous transport systems in the stochastic environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.