Abstract

The relation between solar irradiation and sunshine duration was investigated from the very beginning of solar radiation measurements. Many studies were devoted to this topic aiming to include the complex influence of clouds on solar irradiation into equations. This study is focused on the linear relationship between the clear sky index and the relative sunshine proposed by the pioneering work of Ångström. A full semi-empirical derivation of the equation, highlighting its virtues and liabilities, is presented. Specific Ångström – type equations for beam and diffuse solar irradiation were derived separately. The sum of the two components recovers the traditional form of the Ångström equation. The physical meaning of the Ångström parameter, as the average of the clouds transmittance, emerges naturally. The theoretical results on the Ångström equation performance are well supported by the tests against measured data. Using long-term records of global solar irradiation and sunshine duration from thirteen European radiometric stations, the influence of the Ångström constraint (slope equals one minus intercept) on the accuracy of the estimates is analyzed. Another focus is on the assessment of the degradation of the equation calibration. The temporal variability in cloud transmittance (both long-term trend and fluctuations) is a major source of uncertainty for Ångström equation estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.