Abstract

The remarkable properties of graphene, including unusually high mechanical strength and stiffness, have been well-documented. In this paper, we combine an analytical solution for ballistic impact into a thin isotropic membrane, with ab initio density functional theory calculations for graphene under uniaxial tension, to predict the penetration resistance of multi-layer graphene membranes. The calculations show that continuous graphene membranes could enable ballistic barriers of extraordinary performance, enabling resistance to penetration at masses up to 100× lighter than existing state-of-the-art barrier materials. The very high elastic wave speed and strain energy to failure are the major drivers of this increase in performance. However, the in-plane mechanical isotropy of graphene, as compared to conventional orthotropic woven textiles, also contributes significantly to the efficiency of graphene as a barrier material. This result suggests that, for barrier applications, isotropic membranes composed of covalently bonded two-dimensional molecular networks could provide distinct advantages over fiber-based textiles derived from linear polymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call